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Reflexion coefficients greater than unity have now been predicted for a variety 
of different systems involving waves propagating towards a shear layer, but 
almost invariably only in regions of parameter space for which the layer exhibits 
Kelvin-Helmholtz instability. This paper contains a study of two examples in 
which, for appropriate parameter values, there are no such instabilities to obscure 
(or even prevent) the ‘over-reflexion’ of an incident wave, namely (a) hydro- 
magnetic internal gravity waves meeting a vortex-current sheet in a stratified 
fluid and ( b )  magneto-acoustic waves meeting a vortex sheet in a compressible 
fluid. In  the former case the energetic aspects of over-reflexion are examined in 
detail, thus displaying the way in which the excess reflected energy is extracted 
from the mean motion and the sense in which the transmitted wave may be 
viewed, by analogy with certain concepts employed in plasma physics, as a 
carrier of so-called ‘negative energy ’. 

1. Introduction and summary 
It has been known for nearly twenty years that linear theory occasionally 

predicts, for waves of one kind or another incident upon a shear layer, a reflexion 
coefficient greater than unity, so that more energy is reflected back towards 
the source than was originally emitted. This ‘over-reflexion ’ was fist encountered 
in studies by Miles (1957) and Ribner (1957) of the transmission and reflexion of 
sound waves at a vortex sheet z = 0 separating two regions of constant horizontal 
velocity U, and U.. This acoustic problem was subsequently extended by Fejer 
(1963) to include hydromagnetic effects and by McKenzie (1972) to include 
effects due to buoyancy. The over-reflexion of internal gravity waves by a finite 
layer of constant shear, as opposed to a vortex sheet, separating two uniform 
streams of incompressible fluid has been investigated numerically by Jones (1968) 
and Breeding (1971) and analytically by Eltayeb & McKenzie (1975). The over- 
reflexion of Rossby waves propagating through a hyperbolic-tangent zonal shear 
flow on a beta-plane has been examined numerically by Dickinson & Clare (1973) 
and GRisler & Dickinson (1974). 

Precisely what significance can be attached to over-reflexion has however been 
somewhat obscured by the fact that it  appears to have been predicted only in 
circumstances for which the vortex sheetlshear layer is unstable. When internal 
gravity waves meet a finite layer of constant shear, for example, over-reflexion 
cannot occur unless the Richardson number Ri is less than 4. Although it is well 

t Present address: St Catherine’s College, Oxford. 
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known that Ri < 2 does not automatically imply instability (while Ri > Q 
certainly implies stability) of a stratified shear flow (see Drazin & Howard 1966; 
Hazel 1972; Howard & Maslowe 1973), Jones (see his ‘model 111’) and Breeding 
have shown that it does in this particular case. When acoustic waves meet a 
vortex sheet, on the other hand, a purely two-dimensional analysis (i.e. ‘crests’ 
normal to both the z axis and the direction of streaming) predicts that a t  suffi- 
ciently high Mach number over-reflexion can occur without instability. Fejer & 
Miles (1963) have, however, shown that the system is always unstable to suitably 
three-dimensional disturbances at any Mach number. 

The presence of instabilitiesper se by no means, of course, renders insignificant 
any prediction of over-reflexion. Whether it will be able to occur and be clearly 
discernible in spite of them will presumably then depend on the magnitudes of 
their growth rates and on the rate at which they modify the basic flow, but this 
aspect of the problem is not usually investigated. One notable exception is the 
numerical study of Rossby-wave over-reflexion by Geisler & Dickinson (1  974). 
Over-reflexion is found to occur only when the mean flow is such that the potential 
vorticity gradient p - d2U/dys (y here denoting northward distance from some 
fixed latitude and /3 denoting the gradient of the Coriolis parameter) changes sign 
at some latitude. The simple and well-known sufficient condition for stability due 
to Kuo (1 949) is then violated, and by decoupling the waves and mean flow in the 
numerical model Geisler & Dickinson indeed revealed the presence of instabilities. 
Nevertheless throughout most of their investigation the waves and mean flow 
were coupled and the former did not then experience any sustained growth, owing 
(presumably) to the time required for significant growth of the instabilities being 
longer than that required for the over-reflexion of the incident wave to cause 
significant changes in the mean flow (by extracting kinetic energy from it). It is 
important to note that only one zonal wavenumber was carried in the numerical 
calculations, but i t  was nevertheless argued quite convincingly, from the results 
of Dickinson & Clare (1973), that normal modes of other wavenumbers were also 
unlikely to have large enough growth rates to prevent the over-reflexion process. 

We shall show in this paper that it is possible to find systems in which, for 
suitable values of the relevant parameters, there are no such unstable modes 
which could mask or even prevent the over-reflexion of an incident wave, a t  least 
on the basis of a linear, diffusionless theory in which the shear layer is modelled 
by a vortex sheet.t 

The central problem investigated in this paper is the reflexion of hydro- 
t Each of these three qualifications covers a serious possibility requiring investigation. 

We can comment here only very briefly on each in lieu of the very substantial further 
analysis that will be required. It is possible, first, that the systems are subcritically unstable 
to  finite-amplitude disturbances. Second, it is possible that even for very small values of 
the diffusion coefficients there are instabilities analogous to the ‘resistive instabilities ’ of, 
for example, Baldwin & Roberts (1972), even when the non-dissipative stability criterion 
is satisfied. Finally, it is possible that by using a vortex-sheet model we exclude a class of 
unstable modes which would exist for a layer of finite thickness, again even if (1.1) or its 
equivalent were satisfied, as has been found by Blumen, Drazin & Billings (1975) in the 
purely acoustic problem, although it seems reasonable on the basis of their work to hope 
that (if indeed there were such modes) the growth rates would be very small if the shear- 
layer thickness were also small. 
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magnetic internal gravity waves propagating in an incompressible fluid towards 
a vortex-current sheet. The density of the fluid is taken as a gently and contin- 
uously decreasing function of height, while the magnetic field, which is taken 
parallel to the mean flow and is conveniently measured by its associated Alfv6n 
speed V [see equation (2.9)], takes different (constant) values V, and V, on the two 
sides of the sheet. The magnetic field has two effects: it stabilizes the system 
(subject to the above qualifications) if 

v; + v; > $( u, - U1)Z 

IKl + lKl < I&- GI- 

(1-1) 

but a t  the same time tends to suppress over-reflexion, so that this is only possible 

(1.2) 
if 

Provided there is a current sheet, i.e. V, =t= V,, these inequalities leave a (compara- 
tively small) stable region of parameter space in which waves of suitable horizontal 
phase speed will be over-reflected, as shown in figure 1. The relevant analysis is 
given in $9 2 and 3. 

Another such example is furnished by magneto-acoustic waves propagating 
towards a vortex sheet in a compressible fluid free from the action of gravity. 
Both the reflexion problem and the associated stability problem have been 
extensively studied (Fejer 1963, 1964; Sen 1965; Southwood 1968; McKenzie 
1970; Ong & Roderick 1972; Duhau & Gratton 1973) but the results are extremely 
complicated and in the case of the stability problem are available only for a few 
limiting cases. As a result we have so far been able to delineate (appendix C) stable 
over-reflecting regimes only when there is simply a discontinuity in velocity, the 
densities, sound speeds and magnetic fields (which we again take parallel to the 
streaming motion) being the same on both sides of the sheet. The results are 
displayed in figure 2, where 

A =a/lVI,  w =  p&-u11/2p1 (1.3) 

and a is the speed of sound. 
It is probably worth pointing out a t  this early stage that the above statements 

are by no means in contradiction with what is intuitively quite clear, namely that 
if the over-reflected wave is subsequently returned (without too much, if any, 
loss of amplitude) to the vortex-current sheet, by reflexion at either a solid 
boundary or another vortex-current sheet at some other level, it will inevitably 
keep increasing in amplitude by multiple over-reflexion (see $5  and appendix B). 
It has no such opportunity to return to the single vortex-current sheet in the 
above unbounded systems. 

In  this paper we try also to shed some light on the relationship between over- 
reflexion and critical-layer absorption. It is tempting to view the two phenomena 
as simply opposite ends of the same spectrum, critical-layer absorption occurring 
if the velocity gradient in the shear layer is sufficiently weak (i.e. Ri > in the 
pure internal gravity wave problem; see Booker & Bretherton 1967) and over- 
reflexion occurring only if the gradient is sufficiently strong (i.e. Ri < $), but 
there do appear to be some important differences (see $5) .  It is known, for 
example, that there are circumstances in which critical-layer absorption can 

28-2 



436 D. J .  Acheson 

No 
over-reflexion 

0 1 

V, 

FIGURE 1. Illustrating the stable portion of the V,, V, plane in which hydromagneticinternal 
gravity waves of suitable horizontal phase speed will be over-reflected (hatched). The 
Alfv6n speeds have here been made dimensionless with respect to the jump 177, - U,[ in 
horizontal velocity across the sheet. 

occur even in the absence of a basic shear flow, or indeed any basic flow at all 
(Acheson 1972, 1973), but it seems highly unlikely that the same is true of 
over-reflexion. 

The third objective of this paper is to reveal quite clearly, a t  least in one special 
case (i.e. depth of shear layer d < vertical wavelength A, in which case the simple 
model problem of $ 3  should provide an adequate description of events; see $ 5 ) ,  
the energetic aspects of the over-reflexion mechanism. In  order to do this we have 
extended some results from the rapidly growing literature on the interaction 
between internal gravity waves and mean shear flows to the hydromagnetic case 
($02, 4 and appendix A), and these should remain of value when more realistic 
models than that in $ 3 are considered. As far as the author can tell, these energetic 
aspects and certain careful distinctions which have to be made in their elucida- 
tion, collected together below for the sake of clarity, should be quite typical 
(provided d 4 A )  of any other over-reflecting system. 

When hydromagnetic internal gravity waves propagate through a fluid at rest 
there is a t  any level x a mean upward flux of energy 

- 
P =pw, (1.4) 

where p is the total (i.e. including magnetic) perturbation pressure, w is the 
vertical velocity and an overbar denotes a horizontal average. If the basic state 
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FIUURE 2. Illustrating, when the densities, sound speeds and magnetic fields on the two 
sides ofthe vortex sheet are equal, the stable portion of the A ,  W plane in which magneto- 
acoustic waves of suitable horizontal phase speed will be over-reflected (hatched). 

is one of horizontal magnetic field B(z) and horizontal velocity U ( z ) ,  however, it is 
important in evaluating the upward flux of energy that one either (a )  takes 
account of the fact that there is then, in addition to (1.4), indirect vertical advec- 
tion of energy across surfaces of constant height due to the waves [see appendix A 
especially equation (A 4)] or ( b )  computes the mean rate of working of pressure 
forces alone but on the (sinusoidally) distorted material surface composed of fluid 
particles that were at the height z in the equilibrium state [see (2.20) and (AS)]. 
Either way, terms additional to (1.4) arise in the expression for the net mean 
upward energy flux, which is given by 

[see (2.19) and (A7)]. The extra terms are nevertheless simply related to p y  
[see equation (2.26)] in such a way that 

2F = cpT/(c- U ) ,  (1.6) 

where c is the horizontal phase speed of the wave relative to the fixed co-ordinate 
system. The quantity F ,  which, following previous authors, we term the ‘wave 
energy flux), thus represents the net mean upward energy flux only as measured 
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by an observer moving horizontally with the speed of the local mean flow U(z ) .  
This crucial distinction between P and though emphasized in the non- 
hydromagnetic case by Hines & Reddy (1967) and Lindzen (1973), appears to 
have been quite often overlooked in the recent literature, with occasionally 
erroneous results. One such instance, to which the present paper is especially 
pertinent, is discussed in $5. 

The considerations so far have been valid even if the basic flow U ( z )  and 
magnetic field vary with height, and both F and 9 a r e  then subject to certain 
important constraints (see $ 2 )  of value when considering over-reflexion a t  a finite 
shear layer rather than a vortex sheet (see $5) .  In  the case when U and B are 
constant (or vary only slightly over vertical distances of the order of a wave- 
length) however, a vertical wavenumber and hence a vertical component of group 
velocity wg can be well defined (at least locally) and then 

P = EUl,. (1.7) 

Here E is the ‘mean wave energy density’, an intrinsically positive quantity, 
being calculated in the usual way as the horizontally averaged sum of squares of 
appropriate perturbation quantities [see (2.34)]. Clearly, by (1.6) the net mean 
upward flux of energy in these circumstances is not (I .7) but 

9 = &lug, 

as if a ‘net’ energy density 
& = cE/(c-  U )  

were being carried upwards at  the group velocity. 
If we now consider the steady-state over-reflexion ($3)  in its simplest form, 

namely when the lower fluid is at rest (U, = 0, U, = U > 0) ,  the incident wave 
(from below) will have a positive 9 ( = F )  and wg, while those associated with the 
reflected wave will be negative. In  over-reflecting circumstances the separate F’s  
may be simply added ($  3) to give a net downward energy flux in the lower region. 
Further, the appropriate interface conditions, i.e. continuity of vertical displace- 
ment and perturbation pressure p ,  are easily seen to imply that T (but not P) 
will be continuous across the vortex-current sheet, which acts as neither a source 
nor a sink of energy. Thus the values of T i n  both the upper and the lower region 
must be the same and downward. Since the radiation condition on the trans- 
mitted wave in the upper region implies that wg and P are positive there (see 
$63 and 4), it then follows from (1.8) and (1.9) that 0 < c < U ,  so that over- 
reflexion can occur only if the horizontal phase speed of the wave lies between 
the two fluid speeds. It also follows that & is negative in the upper region, so that 
the transmitted wave might be thought of as carrying ‘negative energy’ 6 
upwards at the group velocity. 

This terminology, borrowed (e.g. McKenzie 1970, 1972) from the theory of 
microwave tubes and space-charge waves on electron plasma beams? (see, for 
example, Krall & Trivelpiece 1973, pp. 136-143; Sturrock 1960, 1961, 1962; 

t A space-charge wave is said to  have ‘positive’ or ‘negative’ energy according as its 
phase speed is greater or less than the average electron drift velocity. This may be compared 
with (1.9), where 8 is positive or negative according as c is greater or less than U .  
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Pierce 1974, pp. 102-1 13; Kadomstev, Mikhailovskii & Timofeev 1965)) recog- 
nizes that as the wave propagates through the upper region it must somehow 
cause a net reduction, rather than enhancement, of the total energy there, and 
this reduction is in fact precisely that needed to account for the surplus energy 
heading back towards the source as a result of the over-reflexion. But a calcula- 
tion of the total energy in any region requires being able to keep track of any 
second-order effects due to the waves, i.e. any changes in the mean flow or 
magnetic field. These in turn cannot be determined from consideration of the 
final steady-state wave system alone, and require consideration of how that wave 
system was established. Such time-dependent considerations also seem desirable 
if, with the net energy flux 9- being downward throughout, one is to be fully 
confident that the radiation condition has been correctly applied to the 
transmitted wave. 

Accordingly in 0 4 the very gradual establishment of a constant-amplitude 
hydromagnetic wave train in a moving stratified fluid is investigated by a 
multiple-scale method, from which it becomes clear precisely how the trans- 
mitted wave steadily diminishes the total energy in the upper region.? As the 
effective ‘front’ reaches a given level, it  introduces wave energy E that was not 
there before, but its precursor has already gradually set up a change U in the 
mean horizontal flow (but not magnetic field) at that level given by 

poZ = E/(c  - U ) ,  (1.10) 

which, when c < U ,  means a (time-independent thereafter) decrease in the mean 
horizontal flow and hence in the kinetic energy associated with it. The change in 
total energy (density) is therefore evidently 

E +po UZ,  (1 .11)  

i.e. the ‘wave energy’ plus U times the momentum change induced by the wave, 
and is precisely equal to Q. As the transmitted wave propagates upwards i t  
simply steadily decreases the kinetic energy of the mean horizontal flow [in more 
and more of the upper region and by a constant amount (1.1 O)] at a greater rate 
than it brings in ‘wave energy’ E to the upper region. The process is illustrated 
very schematically in figure 3 for the transient case in which a slowly modulated 
incident wave train, with a beginning and an end, meets the vortex-current 
sheet. It is the alterations in the mean flow that are displayed in figure 3, and 
these show clearly what range of heights the various wave trains occupy a t  each 
stage of the process. The transmitted wave may or may not be larger than the 
incident one [see (3.6)] but as long as c < U the defect in mean flow energy in the 
upper region exceeds the transmitted ‘wave’ energy, and over-reflexion occurs. 

Whether, therefore, the wave is to be regarded, when c < U ,  as a ‘negative 
energy’ one or not depends simply on whether one wishes to count the con- 
comitant change in kinetic energy of the mean flow as part of the wave energy or 
to count it separately, so that ultimately, as Bretherton ( 1 9 6 9 ~ )  remarks, whether 
8 or E should be regarded as ‘the’ energy associated with the wave is largely 

t Similar results have been obtained independently, for a special case of the problem 
considered here, by McIntyre & Weissman (1976). 
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FIGURE 3. Schematic illustration of the variation with time of the mean horizontal flow 
during a transient over-reflexion. The lower fluid is at rest. 

a matter of personal preference. We consistently take the latter viewpoint in this 
paper (noting, in passing, that there are good reasons €or doing so when dissipa- 
tive effects are included - see § 5 - and in wave problems of a more general type 
in which, for example, the wave amplitude is modulated not only in the z direction 
but in the x direction also). Nevertheless the physics of the problem are elucidated 
here by reference to a fixed co-ordinate frame, so the quantities & and 9 are 
crucial, and we finally note the close relationship between them and the wave 
action (e.g. Bretherton & Garrett 1968; Bretherton 1971). This emerges clearly 
from $4, where the time evolution of a hydromagnetic-gravity wave train whose 
amplitude varies slowly with height is analysed when the mean flow and magnetic 
field also vary slowly with height. The wave-action density is defined as 

d E El(@-  Uk), (1.12) 

where w is the frequency of the wave relative to the fixed co-ordinate frame and k 
is the horizontal wavenumber. We see from (1.8) and (1.9) that 

& = 022, 9 = w w g d ,  (1.13) 

so that in the present system the wave action is simply a constant multiple of 
what we have termed above the ‘net’ change in energy due to the waves, 8. The 
amplitude evolution of the wave train is shown in $4 to be governed by the con- 
servation of wave action (as also follows from Bretherton & Garrett’s general 

(1.14) 
argument) : 

Using a number of the results quoted above, including (1.13), this can be cast into 
the following form involving E and 1p: 

a d  a -+- ( W , d )  = 0. 
at az 

aE 8F dU - - + - + - (po uw -P-lb, b,) = 0. 
- 

at az az (1.15) 
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This equation involving the ‘wave energy’ E, ‘wave energy flux’ P and a radia- 
tion-stress term (Longuet-Higgins & Stewart 1964; Whitham 1962; Bretherton 
1971, pp. 96-97) can also be derived directly from the linearized perturbation 
equations, or (appendix A) using the conservation of total energy. On the other 
hand, using (1.13) equation (1.14) can also be written in the form 

a q a t  + a q a z  = 0, (1.16) 

making the consistency between conservation of wave action and total energy in 
the present system especially transparent. 

2. Hydromagnetic waves of steady amplitude in a stratified shear flow 
When all diffusive processes can be neglected the basic hydromagnetic equa- 

tions governing the motion of an incompressible fluid are 

p(au/at+u.vu) = - V ~ + , U - ~ B . V B + ~ ~ ,  (2.1) 

(2.2) 

(2.5) 

aB/at = v A (u A B), 

+/at + u . vp = o 
V . U  = 0, V.B = 0, (2.3), (2.4) 

(see, for example, Chandrasekhar 1961, chap. 4). Herep denotes the fluid density, 
u the Eulerian velocity vector, t time, p the magnetic permeability, B the 
magnetic field, g the acceleration due to gravity and p = pF + 4,~-1B2 is the 
‘total’ pressure, including both the fluid pressure pF and the magnetic pressure 

Referring all quantities to a set of rectangular Cartesian co-ordinates (x, y, z )  
4p-lB2. 

the basic equilibrium state 

u0 = { u(z), 0, O} ,  Bo = {B(z),  0, O }  (2.6) 

is an exact solution of (2.1)-(2.5) provided that the density varies with height 
only, in which case magnetohydrostatic balance holds: 

where g = ( O , O ,  -9). 
If we now consider small-amplitude perturbations u, b, p and p (in velocity, 

magnetic field, density and total pressure respectively) to this system the linear- 
ized forms of (2.1)-(2.5) admit two-dimensional solutions in which all perturba- 
tion quantities q+ may be written as 

dPoPZ = - POS, (2.7) 

q+ = g [ $ ( z )  exp i(kx- wt) ] .  (2.8) 

After making the Boussinesq approximation, in which the basic density gradient 
is supposed so weak that po may be regarded as taking some constant mean value 
everywhere in (2.1) except in the buoyancy term, we eliminate all perturbation 
quantities in favour of the vertical velocity 8. Thus, defining the local Alfvh 
speed 

V(Z) E e  B(z)/(pPo)4 (2.9) 
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the buoyancy (Brunt-VBisBIB) frequency (assumed constant and real, so that the 
fluid is stably stratified) 

(2.10) 

and the function P(x) G V2/(G- U)2- 1 (2.11) 

(where G = w/k ,  the horizontal phase speed), we find 

(2.12) 

where the primes denote differentiation with respect to z. The other perturbation 
quantities are related to @ as follows: 

a = ia'/k, 6, = B@/(U-c) ,  (2.13), (2.14) 

A 

kb, = - 
C- U e- u 

k@ = - ipoP{(c - U )  8' + U'O}, 

k(c - U )  p̂  = - ipi 2. 

(2.15) 

(2.16) 

(2.17) 

Energy Jlux 
We have already made a clear distinction in $1 between the wave energyjux,  
defined as - 

F = p ~ ,  (2.18) 

and the net energy flux a t  any given height zo, 
- 

9 = @+ U(pOG-pu-%,b,) .  (2.19) 

The origin of the additional terms in (2.19) through vertical advection of energy 
across surfaces of constant height is demonstrated in appendix A [see especially 
equation (A 4)]. A simple alternative way of seeing how they arise is to calculate 
the rate of working of the perturbation pressure forces alone, but normal to the 
sheet 9 composed of fluid particles which were at zo in the absence of the waves. 
If the equation of this sheet is x - xo = ~ ( x  - ct)  and s denotes arc length along it, 
the mean rate of working by perturbation pressure forces of the fluid below on 
that above is measured by 

where 

denotes the unit normal to Y: U denotes the undisturbed flow ( U ,  0,O) and the 
integral (2.20) is taken over a wavelength. Thus (2.20) may be written as 

J p (  u + u) .n as, 

n = ( - ar/ax, 0 , l )  [i + (87/ax)2]-Q 

(2.20) 

(2.21) 
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where the linearized x component of the momentum equation (2.1) has been used 
in the last line. Now 

w = aylat + uav/ax,  b, = ~ a q l a x ,  (2.23) 

the latter equation reflecting that by AlfvBn's theorem the sheet (or, rather, its 
cross-section in the x, x plane) remains a magnetic field line. Further, since all 
perturbation quantities in this steady-amplitude wave situation depend on z 
and x - ct alone, (2.22) can be simplified to give 

l p w  dx + U p o l u  (2 + U z )  dx - %sBbs$dx 

= I p w  dx + U / (pouw -p-lb, b,) dx, (2.24) 

whence (2.19). 
Thus F represents the mean upward flux of energy a t  any height due to the 

presence of the waves only when U = 0, or equivalently when this flux is 
measured by an observer moving with the local flow speed V(z)  a t  that height. 
The two fluxes F and 9 are, however, simply related, for defining 8 = kx - wt 
and using $ to denote the complex conjugate of $ we may show, using (2.16), that 

- 
J' = pw = $(fj eis + 17 @') (a eio + G e-ie) 

= $(@G + @&) = - $ipo(c - U )  Pk-l(@'G - G'd), (2.25) 

and on using (2.13)-(2.15) we obtain 

(2.26) 

So from (2.19) s = cF/(c- U ) .  (2.27) 

We note, however, that (2.27) can alternatively be derived almost immediately 
from the first term of (2.22) without reference to Reynolds or Maxwell stresses. 
Since q is a function only of x-ct we find, using (2.23), that 

so CF 

It is clear from (2.26) and (2.27) that the net upward energy flux 9 is simply 
a constant multiple of the sum of the horizontal Reynolds and Maxwell stresses, 
for - - 

Further, by multiplying (2.12) by G and subtracting the result of multiplying its 
complex conjugate by 8 we obtain 

= C ( P ~ U W  -p-'b,b,). 

d{P(&'G - G'd)}/dx = 0, 

whence, using (2.27), d F / d Z  = 0. (2.28) 
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This result may be interpreted in a variety of different ways. It states that the 
sum of the horizontal Reynolds and Maxwell stresses (2.26) is independent of 
height, an extension to the hydromagnetic case of a result due to Eliassen & Palm 
(1961). That 9, rather than P, is constant with height in the present situation 
can be intimately related to the fact that when a wave packet propagates through 
the shear flow it is wave action [see (1.12) and cf. (2.27)] rather than wave energy 
that is conserved as the packet moves (see $ 4  and Bretherton 1966; Bretherton 
& Garrett 1968; Hayes 1970). Again, (2.28) simply states that the mean energy 
flux past a given height z1 is precisely that past any other height z2, since the 
assumptions of time-independent amplitude and no diffusive processes have 
ruled out (to leading order, a t  least) any change with time of the mean flow or 
magnetic field by the waves (see $ 4  and appendix A), so that the total mean 
energy between z1 and z2 must remain constant. These considerations, especially 
the last, will be helpful in the interpretation of the over-reflexion problem in $ 3. 

Plane waves of constant amplitude 
When the undisturbed flow speed U and magnetic field B (and hence Alfv6n 
speed V )  are constant with height (2.12) has solutions 3cc expimz, where 

m2 = L2(N2/SL2- 1) (2.29) 

and we have defined S = (c- up- v2. (2.30) 

Clearly the vertical wavenumber m is real if and only if 0 < SL2 < N2, i.e. 

V' < (C- U)' < V'+ N2/L2. (2.31) 

Rewritten as a dispersion relation for W ,  (2.29) becomes 

(W - Uk)2 = V2L2 + N2k2/(E2 + m2), (2.32) 

and reduces to Doppler-shifted versions of the familiar dispersion relations for 
Alfvh and internal gravity waves when N = 0 and V = 0 respectively (e.g. 
Lighthill 1967). Provided m is real we can calculate the vertical group velocity 

(2.33) 

and notice that when U = 0 these waves share with pure internal gravity waves 
the property of a vertical group velocity of opposite sign to the vertical phase 
velocity. 

The mean wave energy E per unit volume is defmed to be 

(2.34) 

where u and b denote the perturbation velocity and magnetic fields and 11 denotes 
the vertical displacement of a particle from its equilibrium position (see 
appendix A). It represents the energy due to the presence of ' net ' waves only for 
an observer moving with velocity U in the x direction, and does not, when added 
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to  the energy density of the undisturbed state, give the total energy density of the 
disturbed system, because in setting up the steady wave train second-order mean 
motions can be induced which change the energy of the background state (in a 
quite crucial way in the over-reflexion problem of $3). By using (2.13)-(2.15) and 

(2.35) 
(2.32) we find 

E = &p0(1 +m2/7c2) ]GI2, 

and it is also a simple matter using (2.25) to show that provided m is real 

p23w = Ew, = -poN2m 1812/2E(c- U )  (k2+m2). (2.36) 

If m is imaginary, on the other hand, (2.25.) gives pW = 0 as expected for an 
evanescent wave. 

3. Over-reflexion at a vortex-current sheet 
We now consider hydromagnetic-gravity waves propagating in a fluid which 

is both stably and continuously stratified, while the basic flow, magnetic field 
and Alfvbn speed take constant values U,, B, and V, in the region z .c 0 and 
constant values U,, B, and V, in the region z > 0. Equation (2.12) evidently admits 
exponential solutions for @ ( z )  in both regions, the vertical wavenumber in each 
being given by (2.29) with appropriate subscripts, and we now consider the 
consequences of a wave incident on the vortex-current sheet from z = - CQ. We 
write the vertical velocities associated with the incident (i), reflected (P) and 
transmitted ( t )  waves respectively as 

= A, eimiz, 8, = A, e-imiz, a, = A, eimaz, (3.1) 

where m2, = N2/S, - k2, mg = N2/S, - k2. (3.2) 

We shall be primarily interested in the case when both m, and m2 are real, and 
the ambiguity in their signs left by (3.2) is then removed by application of the 
radiation condition. Since this effectively requires consideration of how the 
assumed steady-state wave system would be set up a proper discussion of this, 
including its energetic aspects, is deferred to $4. The result is simply that we must 
insist that the vertical group velocity of the incident and transmitted waves be 
positive and that the vertical group velocity of the reflected wave be negative. 
Adopting (without loss of generality) the convention that k is positive, we see 
from (2.33) and (3.1) that this implies 

(c-U,)m, < 0, (c-U,)m, < 0. (3.3) 

In  the case when m, is imaginary its sign must be such that 8, tends to zero, 
rather than increases without bound, as z- tco.  

The interface, which is of course distorted by the wave with a displacement 
proportional to exp i (Ex - wt) ,  must remain a material surface, and this leads to 
the linearized kinematic condition 

-- - 8, a t  x = 0. 
ai + a, 
c-u, c-u, (3.4) 
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Equation (2 .2 )  then implies, as expected by Alfvh’s theorem in this situation of 
a perfectly conducting ‘ frozen-in ’ magnetic field, that the cross-section of the 
interface in the x, z plane remains a magnetic field line. To avoid infinite accelera- 
tions the appropriate dynamic condition a t  the interface (see, for example, 
Shercliff 1965, pp. 64-66) is then simply continuity of total pressure p ,  which 
implies on using (2.16) that 

S1(iq +a:) #,a; 
c-u, c-u, =- a t  z = 0. 

Prom (3.1), (3.4) and (3.5) we thus find 

where Q m,S,/m,S,, (3-7) 

and we define the reflexion coefficient R = IA,/A,I. 
In  discussing the reflexion of the wave at the interface we first note that we 

must choose c such that V ;  < (c - U,)z < Vq + N2/k2 in order that m1 is real. 
If c does not satisfy the inequality Vg < (c - UJ2 < VZ, + N2/k2, m2 is imaginary, 

the transmitted wave is evanescent, Q is imaginary, R = 1, and we have perfect 
reflexion. 

If c does satisfy the inequality V i  < (c - U,)z < VZ, + Nz/k2 the reflexion coeffi- 
cient can take one of two forms, for (a) if (c - U,) (c - U,) > 0 then mlmz > 0, 
Q > 0, R < 1 and we have partial reflexion, while ( b )  if (c - 77,) ( c  - U,) < 0 then 
m1m2 < 0, Q < 0, R > 1 and we have over-reflexion. 

We note a t  once that over-reflexion can take place only by virtue of the shear 
flow, since a necessary (but not sufficient) condition for its occurrence is 

(c - U,) (c - U,) < 0, (3.8) 
and if U, = U, this is impossible, no matter what magnetic fields B, and B, are 
chosen. Equation (3.8) states simply that the horizontal phase speed must take 
a value between the two fluid speeds if over-reflexion is to occur. 

Indeed, it turns out that given any shear flow, which in the absence of a 
magnetic field will over-reflect some waves of appropriate phase speeds c, applica- 
tion of a suitably large magnetic field can make over-reflexion impossible. To see 
this we note that in addition to (3.8) we need (2.31) to be satisfied on both sides 
of the interface, whence no over-reflexion can occur, for any c, unless 

Iq+llq < (U,-U,l < (V2,+N2/k2)a+(Vg+N2/JCz)a. (3.9 a, b )  

This in turn implies that, for a given system, over-reflexion will not occur if the 
horizontal wavelength is too short. 

The normal modes of the system 

It is necessary here to consider three-dimensional disturbances, i.e. 

w = 9[t3(z)expi(kx+ly-wt)], 

etc., and the appropriate counterpart of (2.16) for the case when U and V are 
constant is 8 = - ip, kS&’/( k2 + 12) (c - U )  . (3.10) 
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The normal modes have structure 8, = Aleimiz and 8, = Azeimez in regions 
1 and 2 respectively, where m, and m, satisfy the dispersion relation 

m2 = (k2 + 1,) (N2/Sk2 - 1) (3.11) 

in the respective regions, which of course reduces to (2.29) when I = 0. 
When c = cR + ic, both m, and m, will in general be complex, and the appro- 

priate root to be taken in each case must be such as to ensure that the disturb- 
ances vanish as IzI +a. Because the basic flow and magnetic fields are in the 
x direction only, the kinematic condition at the interface is simply 

&,/(c- U,) = &,/(c- U,) a t  z = 0 (3.12) 

[cf. (3.4)], and does not involve 1. Further, because I occurs only as amultiplicative 
factor common to both sides of the interface in the new expression (3.10) for 9, 
the continuity of total pressure across the interface simply means that 

S18i/(c - U,) = B,&;/(c - U,) at z = 0 (3.13) 

[cf. (3.5)], so that we obtain as the equation for the normal modes 

m, S, = m, 8,. (3.14) 

There are three possible roots of this, namely 

(3.15) 

(which is such that 8, = S,, and hence m, = m,) and 

c = +(U, + U,) f. 2-*"2/k2 + Vf + v; - i( u, - Ul)2]3, (3.16) 

but the admissibility of each, inasmuch as all the conditions of the problem must 
be satisfied, depends in a complicated way on the parameters involved, as does 
the physical nature of the associated perturbation fields. We shall not discuss 
this at length here, but simply note that the root (3.15) is always real, while (3.16) 
yields exponentially growing normal modes, if k: is sufficiently large, unless the 
magnetic fields are strong enough, i.e. unless 

v;+vZ, > +(Uz-U,)2, (3.17) 

which is precisely the condition for stability obtained by Michael (1956, 1961; 
see also Axford 1960) in the case when stratification is absent. 

In  the circumstances (3.9) for which over-reflexion may occur, the root (3.15) 
corresponds to two waves of equal wavelength and constant amplitude propa- 
gating away from the vortex-current sheet, one towards z = + a and the other 
towards z = - co. Such a solution would ultimately be realized if one could give 
the vortex-current sheet an x-periodic initial normal velocity at t = 0, say, 
without disturbing the fluid elsewhere (see $ 5 ) .  In less simply defined regions of 
parameter space the roots (3.16) have similar interpretations. 
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Some examples of over-reJlexion 

Inequality ( 3 . 9 ~ )  is easily seen to be compatible with (3.17), but together they 
evidently leave only a comparatively narrow band of parameter space in which 
over-reflexion can occur with the vortex-current sheet being at the same time 
stable (see figure 1). Nevertheless by suitably choosing c over-reflexion can always 
be found anywhere in that band. 

We have plotted in figure 4 (a)-(d) the reflexion coefficient R against the hori- 
zontal phase speed c for four different values of V .  Speeds have been non- 
dimensionalized with respect to that of the lower fluid and both the velocity and 
the magnetic field have been given jumps by a factor of five across the interface, 
thus U, = 1, U, = 5, V, = V ,  V, = 5V, and N / k  has been chosen as 4.6 (so the 
horizontal wavelength has been fixed and variations in c reflect those in the 
frequency w ) .  Gaps in the graphs where no entry for R occurs correspond to 
values of c for which m, is imaginary, in which case the 'incident' wave is 
evanescent and has no component propagating towards the vortex-current 
sheet. In  the absence of a magnetic field all waves with values of c between 1 and 5 
are over-reflected, but as V increases from zero the band of over-reflected waves 
is reduced, since the magnetic field starts causing perfect reflexion at  the top end 
and evanescence of the incident wave at the lower end. The system becomes 
stable once V reaches (A)* = 0.5547, and figure 4 (c) shows over-reflexion still 
taking place for c between about 1.5 and 2.2. As V increases still further the over- 
reflexion band becomes even narrower, and finally disappears altogether when 
J' exceeds ($)& = 0.6667, as shown in figure 4 (d). 

The reflexion coefficient is formally (since the linear analysis then breaks down) 
infinite in each case for a certain value of c,  namely that corresponding to the 
natural mode of the system given by (3.15), and the amplitude of the transmitted 
wave is then infinite also. If a source of waves were to be switched on somewhere 
below the vortex-current sheet, this resonance effect would lead to a growth with 
time of the reflected and transmitted waves of this particular wave speed c until 
such time as it was terminated by nonlinear effects or the source was switched 
off again.i This resonance also occurs if the horizontal phase speed matches that 
of one of the other two natural modes of the system given by (3.16), but owing 
t o  (3.8) this can occur only if 

(U, - U,), > J': + V %  + N2/k2 (3.18) 

and this is impossible with the choices of U,, U, and N / k  in figures 4 (a)-(& so 
that these other resonances do not appear. In  figures 4 (e)-(j), however, N / k  has 
been reduced from 4.5 to 3.0, so that (3.18) is satisfied for appropriately low 
values of V .  When V = 0 all three resonances are observed (figure 4e), at 
c = 2.293, 3.000 and 3.707 according to (3.15) and (3.16), but when V = 0.25 the 
critical values of c are 1.864, 2.812 and 4.146, the last of which falls outside the 
range in which (2.31) is valid, so that only a double-peaked structure is found 
(figure 4g) .  For larger values of V ,  (3.18) can be violated and only a single 

t A special case of this has been analysed in detail by McIntyre & Weissman (1976), 
who fmd growth as the first power o f t  for a constant incident wave. 



On over-rejezion 449 

resonance is observed, at the phase speed given by (3.15). Just how prominent 
a part is played in the reflected wave field by these resonant modes, when the 
incident wave takes the form of a transient disturbance containing a whole 
spectrum of frequencies and wavenumbers, cannot be assessed until a full initial- 
value analysis along the lines followed by Jones & Morgan (1972) has been 
carried out. 

Effects of a j u m p  in mean density across the sheet 

In  the analysis so far we have taken the mean density p,(z) to decrease slowly 
and continuously with height throughout the system. Some new features emerge 
if we now suppose that like U and V the density changes discontinuously across 
the sheet from p-  to p+ (with p- > p+). In the Boussinesq approximation this 
leaves practically the whole development unchanged to leading order, provided 
that the fractional change in density A = (p--p+)/p,  is small and the density 
gradien,ts are kept the same as before, except that the dynamic interface condition 
(3.4) now requires modification. 

If x = ~ ( x  - ct) is the equation of the interface, the expression for total pressure 
balance across it reduces, when linearized, to 

By virtue of the initial magnetohydrostatic balance (3.19) reduces to 

pg+pr = p t+pogTA at z = 0. 

We have, in addition, the same kinematic conditions as before, 

wi + wr = ’TI” + u1 ~ T I ~ x  at = 0 
Wt = aqpt  + u2 aq/ax 1 

[whence (3.4)], and by combining (3.20) and (3.21) we have 

in place of (3.5). Proceeding as before we obtain 

A, m,S, - m2S2 + igA 
- m, 8, -I- m2S, - igA ’ 
- 

z = o  

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

For real values of the frequency w the quantities S, and S,  are, of course, real 
[see (2.30)]. The wavenumbers m, and m2 are given as before by (3.11), and while 
that (m,) corresponding to the incident wave must be real, m2 may be imaginary, 
in which case there is no upward flux of energy above the interface and the 
reflexion coefficient R is unity, as evinced by (3.23). If m2 is also real, on the 
other hand, 

(m, S ,  - m2 S2)2 + g2A2 
(m1S,+m2S2)2+g2A29 

R2 = (3.24) 

and the circumstances in which under- or over-reflexion will take place are 
then evidently precisely the same as in the absence of a density jump. We note, 

29 FLbf  77 



450 D.  J .  Acheson 

10 

8 

6 

R 4  

2 

n 

10 

8 

6 

4 

" 
1 3 3 4 5  0 1 2 3 4 5  

0 1 3 3 4 5  0 1 7 3 4 5  

C C 

FIGURES 4 ( a d ) .  For legend see facing page. 

however, that in the presence of a density jump the amplitude of the reflected 
wave is finite for all values of the horizontal phase speed c .  

For the purposes of illustration by specific examples it is convenient to measure 
the density jump, like everything else, by an associated speed, and we choose the 
speed %? of the waves that would propagate (solely) along the interface if the 
fluids on either side were of constant, but slightly differing, density (p- and p+) 
and if both the basic flow and the magnetic field were absent, i.e. 

5 9  = gAl2k. (3 .25 )  

A rough order-of-magnitude estimate of the various terms in (3 .24)  indicates that 
in either the numerator or the denominator the ratio of the first and second term 
will bypically be N c2/g2. Thus if c2 9 W2 the reflexion coefficient for waves with 
phasespeedgivenby(3.15), thoughfinite,wiIl belarge, - /c/%/. Infigurea4(f)and 
(h)  the reflexion coefficients are plotted, for two particular examples with$? = 0.4, 
alongside their counterparts when %? = 0 (figures 4 e, g ) ,  and the limitation of the 
resonant peaks is evident. As the density jump across the interface, and hence %?, 
is increased the maximum reflexion coefficient drops quite rapidly. This is illus- 
trated for the case J' = 0-58 (cf. figures 4 u 4 )  by figures 4 (i) and (j) and figure 5.  
The latter shows that if %? is greater than about 2 the maximum reflexion coeffi- 
cient is virtually indistinguishable from, but still always greater than, unity. 

The interface amplitude 7 can be readily calculated from (3 .21) ,  and when 
normalized by the displacement amplitude of the incident wave displays a simi- 
larly sharp decrease as c2/q2 decreases. Delisi & Orlanski (1975)  have recently 
studied a simpler system with no basic flow or magnetic field and a homogeneous 
fluid on the 'far ' side of the density-jump interface, so that R = 1 .  By an analysis 
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FIGURE 4. Plots of reflexion coefficient R against horizontal pbase speed c in various 
specific cases illustrating over-reflexion (see text for full description). (a)-(d)  are for 
N/k  = 4.5 and no density jump across the interface (%? = 0). In them V takes the values 
0.00,0-25,0.58 and 0.75 respectively. ( e ) - ( j )  are for N / k  = 3.0, the values of V and %? being 
as follows : 

( e )  (f)  (9 )  (h)  (4 (3.) 
V 0.00 0.00 0.25 0.25 0.58 0.58 
%? 0.00 0.40 0.00 0.40 0.40 1.26 

similar to that above they found that the interface amplitude is a maximum when 
the horizontal phase speed c matches the interfacial wave speed %‘ and decreases 
sharply as c2/%2 decreases. They conducted experiments which verified these 
predictions and showed, more significantly, that incident and reflected wave 
trains of sufficient amplitude can lead to overturning in a limited region near the 
interface (see their figure S), apparently due to local gravitational instability 
caused by the horizontal advection of density. It will evidently be important to 
bear in mind this possibility of wave ‘breaking’ in future studies of internal 
gravity wave over-reflexion, when the amplitude of the reflected wave may be 
quite large even if that of the incident wave is not. 

29-2 
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FIGURE 5. Illustrating, for the case V = 0.58 and Nlk = 4.5, the rapid drop in the maxi- 
mum reflexion coefficient as the jump in mean density across the interface, measured 
by V, increases. 

Energy balance across the interface 

From (3.21), w, and 7 are precisely out of phase, so that 
- 
P,tWt/(C- U2) = (Pt +Po97A)%/(C- 4) a t  z = 09 

and from (3.4) and (3.20) we thus find 
- 
Ptwt/(c-U2) = (Pi+Pr) (wi+wr)/(c-ud at = 0 (3.26) 

= (piwi +prwr)/(c - U,) at z = 0, (3.27) 

owing to the phase relationships between the various quantities evident from 
(2.16) and (3.1). Equations (3.26) and (3.27) show that the net upward energy 
flux 9 is continuous a t  the interface, and thus the same everywhere. As pointed 
out in 0 1, if we consider the lower fluid to be at rest (U, = 0) and take U, = U > 0, 
it is then inevitable in over-reflecting circumstances, since c is then less than U, 
that 9 is negative. In  the next section we investigate in detail how the upward- 
propagating transmitted wave accomplishes this net downward transport of 
energy. 

-- 

4. Evolution of a hydromagnetic wave train in a stratified fluid; changes 
in the mean flow 

We now investigate by a multiple-scale procedure the propagation of a hydro- 
magnetic-gravity wave train whose frequency w and horizontal wavenumber k 
are constant but whose amplitude varies with height and time on scales very long 
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compared with one wavelength and one period respectively (cf. Bretherton 1966, 
1969b). We accordingly introduce the ‘slow’ variables 

2 = az, T = at, (4.1) 

where 01 < 1 is a dimensionless measure of how slowly the wave train is modulated, 
inasmuch as at any given timelheight its amplitude varies by a factor O( 1) over 
a heightltime scale of O(a-l) wavelengthslperiods. We also introduce the (sub- 
sidiary) dimensionless parameter ,8 < 1, the ratio of a typical vertical wavelength 
to the density scale height. Since the Boussinesq approximation will be made, 
the following analysis for a slowly modulated wave train is self-consistent only 
when ,8 < a. While to supplement 5 3 we need strictly speaking consider only the 
case when U and V are constant, i t  is instructive to consider the more general 
case in which U and V also vary on the slow height scale. 

We thus consider perturbations u = (u, 0, w) to the basic flow [U(Z) ,  0, 01, p to 
the density, r, to the total pressure, and f = (f, 0, h) to the basic magnetic field 
[V(Z) ,  0, 01. It should be noted that we are actually using here the associated 
Alfv6n speeds, i.e. the magnetic fields divided by the constant (owing to the 
Boussinesq approximation) factor (ppo)4. Defining 

= PgIPo, # = PIP0 (4.2) 

and making only the Boussinesq approximation, the equations for these 
perturbations are 

( ; + U t ) u + a U ’ w -  V--aV’h+% af = f .Vf-u.Vu,  
ax ax ax 

($+ U&) w- VG+g+- ah a# = f .Vh-u.Vw, 
a2 

(&+ U i )  f + a V ’ w -  V -  au -aU’h = f .Vu-u.Vf,  
ax 

(&+ U L )  h -  V% aw = f .Vw-u .Vh ,  

(4.3) 

(4.4) 

(4.5) 

(4.6) 

aqax  + awlax = 0, 

(apt + u apx )  g - N ~ W  = - u . vg, 
(4.7) 

(4.8) 

where primes denote differentiation with respect to 2. [We may note that if U* 
and V* are characteristic values of U and V ,  h is a characteristic wavelength and 
the variables (x, u, f ,  v,  #, t ,  U ,  V )  are made dimensionless by the reference values 
(A ,  U*, V*, N2h, N2h, LU;l, U*, V*), the dimensionless equations are precisely 
those above, except that N 2  is replaced by unity in (4.8), if we choose 
U* = V* = Nh,  which is the parameter regime in which we are interested. This 
implies that the Richardson number Ri = N2/(dU/dx)2 is large, O(a-2).] 

We now expand all perturbation variables $ in powers of E < 1, a dimensionless 
measure of the amplitude, i.e. 

$f = € ? p + € 2 p ~ +  . . . . (4.9) 
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The amplitude equation; conservation of wave action 

The leading terms, uc1l etc., naturally satisfy the equations obtained from 
(4.3)-(4.8) by striking out the right-hand sides. To these linearized equations we 

(4.10) 
seek solutions 

where $n = 2[Gn(2, T )  exp i{kx + 8 ( x )  - wt}] (4.11) 

and a local vertical wavenumber m is defined in terms of the phase function 

S ( 4  by m(2) = d8/dz .  (4.12) 

Substituting into the linearized versions of (4.3)-(4.8) we obtain, at  order ao, 

$(I) = $1+a$2+ ..., 

and u$, = V2k2 + N2k2/(k2 + m2), (4.14) 

where w, denotes the Doppler-shifted wave frequency 

w,(Z) EE 0 - k U ( 2 ) .  (4.15) 

Equations (4.13) and (4.14) merely state that the relations for a constant- 
amplitude plane wave derived in $ 3  hold locally. From (4.14) we see that the 
vertical wavenumber m will vary with height (on the slow scale 2) owing to 
variations with height of U and V .  

At order al, however, we obtain 

i (wDa2 + vk f ,  - k$2) = aa,jaT + uial - vt&, (4.16) 

i ( O D 0 2  + vkX2 -mf f )  - 8, = au?,/aT + a&s,jaz, (4.17) 

+,f2 + vka2) = a&aT + v’u?, - ut&, (4.18) 

i (w ,  hh2 + via,) = aQaT, (4.1 9) 

i(k&, +ma,) = - adl/a2, (4.20) 

iwDG3 + N 2 d ,  = aG,/aT. (4.31) 

By eliminating all quantities with a subscript 2 among (4.16)-(4.21) we obtain 
tl solvability condition for these equations, and using (4.13) and (4.14) this can 
be cast into an equation for alone: 

aa adl 
wD(k2 + m2) -l+ WL( V2k2 - ~ 5 )  - 

aT az 

Now the local mean wave energy density, which we here denote by e2E [cf. (2.34)], 
is evidently related to the local amplitude a = 18,) by (2.35), i.e. 

E = l .  2p0( 1 + m2/W a2, (4.23) 
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and if we now define the local wave-action density 

&' = E/o, (4.24) 

we find by making extensive use of the local dispersion relationship (4.14) that 
(4.22) can be written in a form expressing conservation of wave action: 

8d/aT + a(wa &')/a2 = 0, (4.25) 

where w,(Z) = aw,/am. This is of course as expected, from the work of Bretherton 
& Garrett (1968). 

When the amplitude of the wave is independent of time (4.26) reduces to the 
statement that &'wg is independent of height, and using the relationship 
Ew, = p, w1 [which is valid locally, as may be established from (4.13), (4.14) and 
(4.23), but see (2.36)] this means thatplwl/(c - U )  is independent of height, which 
we have already shown to be the case when the amplitude is steady [see (2.28)] 
even when no restriction is placed on how fast U and V vary over a distance of 
the order of a wavelength. 

The wave-induced mean motion 

We now investigate (4.3)-(4.8) at second order in wave amplitude, which amounts 
to appending superscripts (2) and (1) to perturbation quantities on the left- and 
right-hand sides respectively. The forcing terms on the right-hand side can be 
calculated from the linearized solutions above, and each has two components: 
a part proportional to exp [ 2i(kx + 0 - wt) ] ,  which simply forces the first 
harmonic of the fundamental oscillation (with zero mean), and a mean component 
that fluctuates only on the slow scales 2 and T. We therefore assume that the 
mean second-order perturbations so forced also vary only with Z and T ,  and 
derive equations for these by taking the horizontal average of (4 .3)-(44,  denoted 
by an overbar. Thus, writing U = u(z), etc., we obtain 

(4.26) 

(4.29) 

awpz = ah/az = 0, (4.30) 

(4.31) 

We now envisage a wave train of the type (4.11) set up by the horizontal 
translation of a slightly wavy wall at z = zo, say, whose corrugations are gently 
increasing in amplitude (from zero a t  time t = 0) on the slow time scale T, so that 
its equation is 

It is easily shown that W = 0 a t  z = zo, whence by (4.30), W is zero everywhere. 

z = Z,+€A(T)cos(kx-wt). (4.32) 
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Similarly % = 0 everywhere (essentially as a consequence of AlfvBn’s theorem), 
as is borne out by (4.29) and (4.30), since 

(4.33) 

Since W = % = 0, (4.28) may be written out in a similar way to (4.33), and by 
identical manipulations to those of Stern (1963, see his equations (4), (6) and (14)) 
it  may be shown that (4.28) can be integrated with respect to T to give 

(4.34) 

so thatfis  O(a2). 
Turning finally to (4.26), the right-hand side can be evaluated by making use 

of (4.13) and (4.18)-(4.21). When u(l) etc. are expanded as in (4.10) the O(1) 
contribution to the right-hand side of (4.26) vanishes, the leading one being of 
order a. This is composed partly of product terms involving, for example, u1 and 
xi2, but we note as a further technicality that an O(a) contribution also emerges 
from terms like 

w1 au,/az = $(a, eis + G, e-is) a(&, eis + Q, e-is)/a:: 

= i[im(iz, a, - ~ , Q J  +a(&, aqaz + G, aa,/az)l, (4.35) 

where s = kx -t 9 - wt. We omit the remaining details of the calculation, which 
leads to the right-hand side of (4.26) being written (to leading order in a) as an 
expression involving u and aa/aZ only, where a2 = 18,12. On using the wave- 
action equation (4.25), equation (4.26) can be written as 

(4.38) 

so that U, in contrast to f [see (4.34)], is O( I). 
Thus to leading order in a the only effect on the mean velocity and magnetic 

fields is a horizontal contribution to the basic velocity (being, in real terms, 
O(e2U)) .  We note that using the local relationships Ew, = p1w1 and (2.26), 
(4.36) can be written, on returning to the notation of $2, as 

- 

(4.39) 

so that the mean acceleration is given by the gradient of the horizontal Reynolds 
and Maxwell stresses. We now turn to the application of the above results to the 
over-reflexion problem of $3, and hence take U and V as constant for most of 
what follows. 
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Energetics of over-reflexion, and the radiation condition 
Since ZL = 0 in the absence of waves, i.e. when a = 0, we can integrate (4.37) to give 

p o E  = E / ( c -  U ) .  (4.40) 

Thus as a finite slowly modulated wave train propagates up past any given level, 
the local wave energy density E will slowly increase to a maximum and (in the 
absence of dissipation) then diminish again to zero as the wave train passes, and 
the local modification (El to the mean flow will do likewise (see figure 3), whether 
the mean flow is accelerated or decelerated being critically dependent, evidently, 
on whether c ( > 0) is greater or less than U .  

If the forcing (4.32) slowly reaches a constant amplitude on the time scale T 
and persists a t  that amplitude thereafter, however, the wave train will consist of 
a precursor (which contains O(a-l) wavelengths and whose amplitude increases 
with depth from effectively zero to that amplitude a, which the source ultimately 
attains) and a lower part of constant amplitude a, extending right down to the 
source. (The amplitude of this lower part, while being independent of time, will in 
fact vary with depth owing to the variation of p, with height, but only on a scale 
of 0(/3-l) wavelengths, and such variation is neglected in the Boussinesq approxi- 
mation.) When U and V are constant, so are m and wg [see (2.33) and (4.14)], and 
(4.25) simply reduces to the statement that amplitude modulations propagate 
upwards a t  the group velocity; in particular, what we shall call for convenience 
the ‘front’ of the wave train (i.e. the tolerably well-defined highest point a t  which 
the amplitude is a,) moves up a t  this speed. This confirms that the radiation 
condition in $3  has been correctly applied. 

Consider now the over-reflexion problem in its simplest form (U, = 0 and 
U2 = U > 0)  slowly set up in the way described above. As the transmitted wave 
propagates through the upper region towards a level zl, say, its precursor grad- 
ually sets up an alteration U, given by (4.40), to the mean horizontal flow there, 
which remains at a constant value once the main steady-amplitude part of the 
wave train reaches 2,. To leading order in 01 no change is effected in the background 
magnetic field, but the mean kinetic energy density is increased by? 

&Po[( u + EU(1) + sZu(2) + . . .)2 + (sdl) + . . . ) Z ]  - &Po u2 
= & ~ , s ~ ( u ( ~ ’ ~  + w(,)’+ SUUT) + . . . . (4.41) 

The first contribution in (4.41) is, of course, that from the kinetic part of the 
‘wave energy’ (2.34), while the second represents the change in kinetic energy of 
the mean flow due to the waves. Thus, reverting to the notation of 492 and 3 
(i.e. replacing s2U and s2E by ;ii and E ) ,  we see that when the main part of the 
wave train reaches any given level the total energy is enhanced by the presence 
of wave energy E, but that there has also been a change p, UZC in the kinetic 

-f Here po represents the mean density of the fluid, according to the Boussinesq approxi- 
mation, and it may be confirmed that if the density in (4.41) were to be expanded in the 
same way as the other variables it would lead to additional terms only O(a/3) compared 
with those in (4.41). It is necessary to know that 3 is at most O(a) to conclude this, which 
follows from (4.31) since the right-hand side turns out to be O(az) ,  as in Bretherton (1969b). 
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energy of the mean flow. By using (4.40) this latter contribution is evidently 

UEf(c - U )  (4.42) 

and is both negative and greater than E in magnitude if c < U and over-reflexion 
is occurring. The net upward energy flux is obtained by adding the wave energy E 
to (4.42) and multiplying by wg, whence we obtain 

(4.43) 
which is precisely (2.27). 

We may note that this finally clears away one cloud which hung over our 
application of the radiation condition, i.e. the net flux of energy being downward 
in the upper medium. It is now clear that in no sense is this energy a t  any stage 
in the setting up of the wave system in $ 3  coming ‘from infinity’: rather, it  is 
at any time coming from the mean flow near the tip of the wave train in the 
upper region. 

,F = cEwgf(c - U ) ,  

5. Discussion 
It is intuitively clear that we can expect the detailed predictions of the analysis 

of over-reflexion at a vortex-current sheet in $ 3 and their explanation in terms 
of the specific wavefmean-flow interaction illustrated in figure 3 to apply in the 
case of aJinite shear layer of depth d only ifd 4 A, a typical vertical wavelength. 
That they then do so gains support from an analysis of the non-hydromagnetic 
case by Eltayeb & McKenzie (1975), whose results tally with those of the corre- 
sponding vortex-sheet analysis (McKenzie 1972) as dfA + 0, despite the fact that 
there is inevitably a critical level where c = U imbedded in the shear layer (since 
U, < c < U, for over-reflexion). Equation (2.28) does not necessarily hold a t  
levels where the governing equation (2.12) is singular, and except in the limit 
dfh + 0 we must expect some discontinuity in 9(which should, however, be small 
if d / A  < 1) and some revision of our interpretation of the over-reflexion 
mechanism. At the opposite extreme d 9 h a WKB analysis of the kind in 
Acheson (1973) certainly leads us to expect that the waves will instead be almost 
entirely absorbed within the shear layer at a level a t  which the Doppler-shifted 
wave speed equals the local Alfvbn speed. Much remains to be done to clarify this 
and the intermediate case d - A, however, and we cut short further speculation 
about this particular system to make some rather more general points. 

We draw attention first to some fundamental differences between the 
mechanism of over-reflexion (when d 4 A )  and the process of critical-layer 
absorption. Considering the latter, we recall that, when the Richardson number? 

Ri = N2/(dU/dz)2  (5.1) 

t We note that, while the parameters Ri and d / h  are, of course, in general independent, 
they are intimately related in a ‘typical’ situation under consideration here. If the layer 
is of constant shear and the mean flow is, say, zero below it and U above, then 
Ri = N2d2/U2.  If we are considering an incident wave with roughly comparable horizontal 
and vertical wavenumbers (k N m),  if its critical level is somewhere reasonably central in 
the shear layer (o N U k ) ,  and supposing any magnetic fields (if present a t  all) to be such 
that V N U (in order that both (1.1) and (1.2) are satisfied), the dispersion relationship 
(2.32) then implies that typically m2 N N Z / U 2 .  Thus typically Ri N (d /A)z  in the 
circumstances envisaged here. 
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exceeds 4 in the pure internal gravity wave problem, a monochromatic (single c) 

upward-propagating steady wave train has its associated Reynolds stress p o E ,  
and hence F [ = c p o G ,  see (2.26) and (2.37)], suddenly attenuated a.cross the 
critical level where c = U [below and above which they are both constant, see 
(2.28)] by a factor 

exp [ - 27r(Ri - a)*] 
(Booker & Bretherton 1967). The wave thus loses its total energy (including the 
po UU contribution) to the mean flow a t  that level, or rather t o  a thin layer sur- 
rounding it and determined by one or more of (a )  diffusive effects (Hazel 1967; 
Baldwin & Roberts 1970), ( b )  nonlinear effects, which can also lead to significant 
reflexion rather than absorption (Breeding 1971 ; Maslowe 1972; Kelly & Maslowe 
1970), and (c) the fact that the wave will never be quite monochromatic, so that 
there will be a spread in its values of c and hence in the locations of the corre- 
sponding critical levels (Booker & Bretherton 1967; Lindzen & Holton 1968). 
The mean flow in that neighbourhood, but not elsewhere, will steadily increase if 
the wave source is maintained, and it will do so indefinitely if no account is taken 
of (a ) ,  ( b )  or (c) above. Eventually it may alter the mean flow such that the 
position of the critical level significantly changes, and subsequent developments 
may include the descent of the entire shear layer, as noted by Lindzen & Holton 
(1968) in their original theory of the quasi-biennial oscillation of the tropical 
stratosphere (see also Jones & Houghton 1971). 

Now contrast this mechanism with that operating in the over-reflecting system 
analysed in this paper, which may be expected to be typical of others provided 
d < A. The extraction of energy from the mean flow for the over-reflexion is 
maintained not by cumulatively slowing down a particular layer of fluid, but 
rather by slowing down by a fixed second-order amount [see (4.40)] a portion of 
the upper region which becomes deeper and deeper as time goes on, so long as the 
wave source is maintained. 

Another distinction to be made between over-reflexion when d < h and critical- 
layer absorption is that in the latter case the alteration to the mean flow is 
permanent, i.e. persists after the wave source has been switched off and waves are 
no longer approaching the critical layer, while in the d < h over-reflecting regime 
the mean flow will at any time be significantly different (by a second-order 
amount) from its original value only wherever the waves have significant ampli- 
tude a t  that time (see figure 3). This last statement would not be true, however, 
if dissipation were present (e.g. Bretherton 1969a, 1971; Holton & Lindzen 
1972; Lindzen 1973; Holton 1974); as a wave train of finite length passes any 
given level some of its energy would be left behind in the form of a modification 
to the mean flow and some would be degraded into heat. 

By way of an immediate corollary to the above remarks, we interject a t  this 
stage a comment on an interesting recent proposal by Lindzen (1974) that internal 
gravity waves radiating from an unstable shear layer in the earth’s atmosphere 
may be at least as important as the Kelvin-Helmholtz mechanism itself in 
explaining the observations of clear-air turbulence. The mathematical model is 
precisely that of $3, with (of course) hydromagnetic effects removed, and Lindzen 
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confines attention to the normal modes (3.15) and (3.16), which then simplify to 

c = i(771-t- U2), (5.3) 

From the latter we see that the system is always unstable to disturbances of 
suitably short wavelength, and it can be shown that such disturbances tend to 
smooth out the original velocity profile in roughly the way indicated (very 
schematically) in figures 6 (a)-(c). The normal mode (5.3) represents two waves of 
constant amplitude and equal vertical wavelength propagating away from the 
vortex sheet, one upwards and the other downwards (as discussed in $ 3). Lindzen 
also notes that by the radiation condition Il' = & must be positive in the upper 
region and negative in the lower region. He goes on to infer, however, that this 
implies a net extraction of energy from the vicinity of the sheet in such a way 
that the profile will be smoothed out roughly as shown in figures 6 (d)-(f), esti- 
mates the time taken for the profile to develop a gradient such that Ri is increased 
to 4, and compares this with an estimate for the time taken for the Kelvin- 
Helmholtz mechanism to achieve the same end. From the results discussed above, 
however, it  is a gradient not of F but of 9, or alternatively of wave-action flux, 
that is crucial to such cumulative changes with time of the mean flow a t  any level 
[see (4.36) and (4.39)]. Since, by (5.3), c lies between U, and U,, although the signs 
of F are opposite in the two regions the signs of 9 are the same [see (1  4 1 ,  indeed 
F is continuous across the sheet and independent of height in the two regions as 
far as the tips of the two wave trains (see $4).  As discussed above, the waves 
represented by (5.3) lead to no cumulative smoothing, and as they propagate 
away from the vortex sheet and fill more and more of each region their effect on 
the mean flow is as shown in figures 6 (g)-(i). The cumulative smoothing envisaged 
by Lindzen can result in this model system only from the systematic growth of 
the Kelvin-Helmholtz instabilities, for then wave-action flux is no longer con- 
served. (Large-amplitude waves might provide another mechanism, but we 
are not equipped to comment on that here. The weakly nonlinear problem has, 
however, been investigated by Grimshaw 1972, 1976.) 

These observations in no way affect some of the other proposals in Lindzen's 
(1974) paper concerning internal gravity waves and clear-air turbulence: in 
particular the possibility that the waves can reach large amplitude by successive 
over-reflexions at the shear layer, with (in principle) a perfect reflexion at the 
ground between each one. We take up the question of multiple over-reflexion at 
the end of this section. 

Next, however, we must emphasize that our remarks above about the way in 
which over-reflexion works have been confined to the case d < A. In  other circum- 
stances it would appear that the additional energy needed for the over-reflexion 
can be drawn steadily from a critical layer. We cite first the numerical study by 
Jones (1968) of internal gravity waves incident on a finite layer of constant shear 
separating two uniform streams. A necessary condition for over-reflexion to occur 
is that 77, < c < U,, in which case the wave will have a critical level in the shear 
zone. It is convenient to divide all such horizontal phase speeds c into two classes, 
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FIGURE 6. The first time sequence (a)-(c) illustrates schematically changes in the mean flow 
due to a Kelvin-Helmholtz instability mode on a vortex sheet in a continuously stratified 
fluid. The second time sequence (d)-(f) and the third time sequence ( g ) - ( i )  illustrate the 
changes in mean flow due to the radiation of neutral internal gravity waves from the sheet 
as envisaged by Lindzen and as indicated by the analysis of this paper respectively. 
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the first being such that the disturbance above the shear layer takes the form of 
an upward-propagating wave and the second being such that the disturbance 
above the shear layer is evanescent. Jones finds that waves with suitable speeds 
in the first class will be over-reflected provided Ri < 0.1 15, a figure with which 
Eltayeb & McKenzie (1975) obtain close agreement (0.1129) in their analytical 
study of the problem. As noted above, Eltayeb & McKenzie show that as Ri -+ 0 
the reflexion coefficient tends to that obtained from a vortex-sheet analysis, in 
which limit we infer that the excess reflected energy is drawn from the flow above 
the shear layer. However, for Ri = 0.1, for example, it  may well be that part of 
the excess reflected energy is being drawn from within the shear layer, in parti- 
cular from the critical level. More significant, we note that Jones also finds that 
waves with speeds such that the transmitted disturbance is evanescent can be 
over-reflected, provided the less stringent requirement Ri < 0.25 is met. In  this 
case .F must be zero above the shear layer, and the over-reflexion mechanism 
discussed in this paper cannot be operating at all (we accordingly anticipate that 
over-reflexion of waves in this second class must disappear altogether in the limit 
Ri 3 0). The excess reflected energy must presumably be wholly obtained by 
cumulatively decelerating the flow at the critical level. 

A similar situation prevails in the case of Rossby waves propagating in a zonal 
shear flow (Geisler & Diekinson 1974). There incident waves of any phase speed 
that are over-reflected must be evanescent on the ‘far’ side of the shear layer, 
owing to the requirement U, < c < U, together with the fact that Rossby waves 
with real north-south wavenumber are constrained, by their well-known dis- 
persion relationship, to have westward phase propagation relative to the local 
flow. Again the excess reflected energy must be being cumulatively extracted 
from the mean flow a t  the critical level. 

A notable feature of the numerical study by Geisler & Dickinson is the way in 
which periods of critical-level absorption alternate with periods of over-reflexion 
in an approach to a final steady state. The potential-vorticity gradient 
,6* E /3 - d2U/dy2 was initially positive everywhere, and Rossby waves were then 
switched on and suffered absorption at the critical level. The local mean flow was 
changed by this in such a way that /3* became negative near the critical level. 
This led to over-reflexion rather than absorption, and the changes so wrought in 
the local mean flow then led ,6* to become positive again. This cycle repeated 
a number of times with diminishing amplitude in the approach to a steady state 
of perfect reflexion. 

One interesting question to which the answer is not yet known is whether over- 
reflexion is possible (as is critical-layer absorption) in systems in which there is 
no mean flow. The present author believes the answer to be ‘no’, reflecting a 
further fundamental difference between the basic mechanics of the two processes. 
Certainly this is the case for the primary model of this paper - i t  was solely from 
the mean flow and not the magnetic field that the over-reflected wave drew its 
excess energy- and a current sheet alone does not suffice for over-reflexion in a 
number of other hydromagnetic systems which the author studied in looking 
for one with the desired stability properties. Here again, however, a finite-layer 
model with a hydromagnetic critical level at some height where the magnetic 
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field attains a special value may conceivably lead to over-reflexion by a totally 
different energy transfer process (cf. the three paragraphs immediately above). 
Some indication that this is not the case arises from the fact that the very form of 
the attenuation factor ( 5 . 2 )  associated with critical-layer absorption of internal 
gravity waves in a shear flow reveals the need for a complete re-working and 
re-interpretation of the analysis when Ri < 4, in which case over-reflexion may 
occur, while the corresponding attenuation factors in the two known examples 
of critical-layer absorption without a shear flow have no such property of 
becoming, formally, complex for certain parameter values (see Acheson 1972, 
equations (3.7) and (3.9); Acheson 1973, equation (2.121). 

We turn finally to the question of multiple over-reflexion. As Lindzen (1974) 
and Eltayeb & McKenzie (19751) point out, the presence of a solid boundary at 
which, in an idealized model, the over-reflected wave is returned to the vortex 
sheet by means of a perfect reflexion will inevitably lead to systematic growth of 
the wave with time. It is also intuitively evident that even in the absence of a solid 
boundary the presence of another sheet a t  some other level will have similar 
consequences, provided that the product of the reflexion coefficients exceeds unity 
for suitable phase speeds c, the growth rates being small, however, if the sheets 
are separated by many vertical wavelengths. This is quantitatively confirmed by 
the analysis in appendix B, which, following that of Berman & Ffowcs Williams 
(1970) for the instability of a compressible jet, shows that when the separation 
distance is large the (small) growth rates of normal modes with such phase speeds 
are just those obtained by making more precise the intuitive argument above 
about the systematic growth via multiple over-reflexion. 

As a conceptually even simpler example we finally consider the effects on the 
model system studied in 0 3 of placing a horizontal rigid lid at some level above 
the vortex-current sheet, and suppose that the fluid is moving to the right with 
speed U above the sheet and is a t  rest below. There is a steady-state wave solution 
to the problem of perfect reflexion, because of the perfect reflexion of the trans- 
mitted wave a t  the boundary, but this state would never be attained because 
even if ( I .  1) is satisfied this system is unstable. After the incident wave train has 
penetrated the vortex-current sheet from below, thus setting up (if the phase 
speed c is appropriate) an over-reflected wave, its transmitted part will be 
perfectly reflected a t  the boundary, will then be over-reflected from the sheet 
back to the boundary and so on. At each subsequent over-reflexion the amplitude 
will be larger than that a t  the preceding one, and this will be true also of the 
downward-propagating transmitted wave that will accompany each such event. 
In  this way the amplitudes get steadily larger as time goes on, and the effects of 
the increasing number of superposed wave trains in each region, each bigger than 
the last, will give rise to cumulative changes with time in the mean flow, that in 
the upper region being steadily diminished (for its kinetic energy is the source 
of the over-reflexion) and that in the lower region being steadily increased until, 
we may suppose (though this is well beyond the scope of our small-disturbance 
theory), the basic state is modified to a point where over-reflexion ceases. 
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Appendix A. The energy equation for the waves and the mean flow 
To establish this we start here from the full basic equations (2.1)-(2.5) and 

denote the basic undisturbed fields by U(z), B(x), po(z) and po(z), the total 
perturbations to them (i.e. including contributions from all orders in B)  being 
denoted by u, b, p and p.  We shall use z* to denote the original height of a fluid 
element that is currently at the height 2, so that 

w = Dz/Dt, Dx*/Dt = 0 (A 1) 

and 7 = x - z *  denotes vertical displacement. In  view of (2.5) elements retain 
their density as they move, so that the density of 8 displaced element is given by 
po(z*), and then p = po(z*) -po(z) .  By subtracting off the magnetohydro- 
static balance (2.7) from (2.1), and multiplying scalarly by U+u, we obtain 

1 D7 +- (U + U) . [ (B + b) . V(B + b)] - pg z. (A 2) 
P 

In  displacing a fluid element from x* to z work is being done at each inter- 
mediate height against a net downward force pg per unit volume, arising from the 
excess density of the element over that of its surroundings, so that the change H 
in potential energy per unit volume due to the waves is 

[cf. (2.34)]. 
(2.2)-(2.6), 

= 97PO@ - 7) + P O ( Z )  -Po@ - 7) 
= 9rl[Po(4 - 7P&) + * * -1 - [ - 7PX4 + h 2 P W  + * * * I 
=-.I 2g7 2 pi(z) + . . . = &poN2q2+ . . . (A 3) 

With some manipulation of the hydromagnetic term and the use of 
(A 2 )  can then be written in the form 

a[&po(z*) (U + u ) ~  + &p-l(B + b)2 + H]/at 

= -V.[{p+&po(z*) ( u + ~ ) ~ + + p - ~ ( B + b ) ~ + H } ( u + ~ )  
-p-'{(U+u).(B+b)}(B+b)] (A 4) 

or, equivalently, 

D[*po(z*) ( u + ~ ) ~ + B ~ - l ( B + b ) ~ + H l l D t  

= - V . [p(U + U) -p-'{(U + U) . (B + b)} (B + b)]. (A 6) 
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Equation (A5) confirms that (2.20), and hence (1.5), represents the net flux of 
energy across a distorted (originally horizontal) material surface, since by 
AlfvBn’s theorem its cross-section remains a magnetic field line, so that 
(B+b) .n  = 0. 

Having dealt with the buoyancy term appropriately in (A 2) we now make the 
Boussinesq approximation, replacing po(z*) in (A4) and (A5) by some mean 
density which we simply denote by po, and take the horizontal average of (A 4) 
to obtain 

a(E +po U%i+,~u-~B6~))lat 

= - a[F+ U(p,uw -,u-lb,) +,u-lB(b,w- b,u)]/az. 

Some other terms which arise in the brackets on the right-hand side, proportional 
to W or 6, and apparently also of second order, vanish when W = 6, = 0, as is the 
case when the (steady or weakly unsteady) wave system is set up as in $4 [see 
(4.32)]. The relationship of (A6) to (2.18)-(2.24) is evinced by the fact that 
b,w-b,u is precisely zero in that steady situation [from (2.13)-(2.15)], and the 
left-hand side of (A6) vanishes, whence d 9 / d z  = 0 [see (2.19) and (2 .28 ) ] .  

In  the weakly unsteady wave analysis with slowly varying U and V in $4, 

,u-lB(b,w - b,u) does not vanish, but may be shown (using the linearized analysis 
of that section) to be O(a2) compared with the dominant terms of (A6), as is 
,u-lB&, [see (4.34)]. The wave energy equation pertinent to that situation is thus 

- 
a(E+p, u%i)/at = -a@<+ U(P,UW -,~-lb,yaz, (A 7) 

which simply states that the rate of change of total energy (waves + mean flow) is 
equal to the gradient of the net (rather than ‘wave’) upward energy flux. To 
complete the link of the conservation of energy here with $ 4  and the conservation 
of wave action (4.25) we see that by using (4.24) and (4.37) the left-hand side of 
(A 7) can be written as 

a[qc  - u) d + u k d l l a t  = ck adlat. (A 8) 
Using (2.26) and (2.36), which are valid locally here, the right-hand side of (A 7) 
can be written as 

Put  in this way, the two sides of (A7) being equal is an expression of the 
conservation of wave action (4.25). 

Appendix B. Two vortex-current sheets in a stratified fluid; instability 
as a result of multiple over-reflexion 

In  support of some remarks made in $ 5 we briefly consider here the stability of 
two vortex-current sheets in a stratified fluid, one a t  z = - H and the other at 
z = H .  As in the primary model considered in this paper the density is taken as 
a function gently and continuously decreasing with height throughout the 
system in such a way that the buoyancy frequency N is constant. To investigate 
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the stability of the system we obtain an equation for the normal modes by writing 

A e%" in region 1 ( z  < - H ) ,  
0 = A$ eimzz +A; e-imz" in region 2 ( - H < z < H ) ,  1 (B1) 1 A,  eims" in region 3 ( z  > H ) ,  

and denote the values of the basic flow speed U and Alfvkn speed V in each region 
by suitable subscripts in the obvious way. By ensuring the continuity of 

O/(c - U ) ,  SO'/(C - U )  (B 2) 

[see (3.4) and (3.5)] a t  both z = - H  and z = H we obtain four homogeneous 
equations for the four amplitude constants appearing in (B l),  and these have 
a non-trivial solution only if 

Recalling from (2.29) and (2.30) that 

rn2 = N2/S - k2 (B 4) 

and s = (c - U)Z - v2, (B 5 )  

(B 3) yields, in principle, the eigenvalues c (or equivalently w ) ,  which we anticipate 
may be complex. As in the primary model of $3, there is an ambiguity left by 
(B 4) in the signs of m,, m2 and rn, which must be resolved in the course of solving 
(B 3) for c. 

In practice, however, the complexity of (B3) is such that this task would 
appear extremely difficult, and we confine attention in what follows to an explora- 
tion of those modes which have very small growth rates, so that the imaginary 
parts of c and S are very much smaller than the corresponding real parts. This 
will then also be true of rn if, as we suppose, the basic parameters of the system are 
such that modes of slow growth rate with the real part of c satisfying (2.31) in all 
three regions can be found. Applying the radiation condition as in Q 3 to regions 
1 and 3, and retaining the convention k > 0, we have 

ml(c - U,) > 0, m3(c - U,) < 0, (B 6) 

where it is understood that the real parts of rn and c are being taken. In  region 2 
the way in which the ambiguity in the sign of rn2 is resolved is purely a matter of 
personal preference. We choose to view the contribution A: eimzz as an upward- 
travelling wave and the other contribution as a downward-travelling wave, in 
keeping with the notation of 0 3, whence 

m2(c - U.) < 0. 

We now note, by comparison with (3.6) and (3.7) and with due regard to the signs 
involved, that the modulus of the first factor on the right-hand side of (B 3) is the 
reflexion coefficient (R-) for the downward-travelling wave A; e-im+ incident 
from region 2 on the lower vortex-current sheet. Similarly the modulus of the 
second factor on the right-hand side of (B 3) is the reflexion coefficient (R,) for 
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the upward-travelling wave A$ eimaz incident from region 2 on the upper sheet. 
It is then instructive to take the logarithm of both sides of (B 3), and then to take 
the real parts of both sides to obtain an expression for the imaginary part of m,: 

m21 = (4H)-llog (R-R,). (B 8) 

The imaginary part of m can be related to the imaginary part of c by expanding 
the right-hand side of (B 4) for small cI and taking the imaginary parts of both 
sides, whence 

real parts of c, m and S being understood unless a subscript I is present. We note 
as a check on our application of the radiation condition (B 6) that it  implies, via 
(B 9), that a t  any given time growing modes decay with distance upwards from 
the sheet a t  z = Hand decay with distance downwards from the sheet at z = - H, 
as required. 

m, + - c I N 2 ( c -  U)/mS2, (B 9) 

Combining (B 9), as applied to region 2,  and (B 8), we have 

- kSz m2 
w, = log (R- R+). 4HN’(c - U.) 

In  view of (B 7)  and the convention k > 0, w, is clearly positive or negative, corre- 
sponding to growth or decay of the mode with time, according as the product 
R- R, is greater or less than unity. This is most easily understood by considering 
a wave train with prescribed (real) w and k generated at z = 0 so as to propagate 
upwards towards z = H .  It will be reflected there, will propagate downwards to 
z = - H to be reflected again and so on, passing z = 0 on the upward journey 
after n such ‘cycles’ with its amplitude changed by a factor (R-R+)n. If the 
horizontal phase speed of the wave is such that R- R, > 1 (which means that 
at least one of the vortex-current sheets is over-reflecting it) then it will grow in 
amplitude with time. This argument may be related more quantitatively to the 
result (B 10) of the normal-mode stability analysis by noting that by combining 
(2.33), (B 4) and (B 10) we have 

W I  = (lw,l/4H)log(R-R,), (B 11) 

where I wg/ is the magnitude of the vertical component of the group velocity of the 
wave train in region 2 .  This means that according to the normal-mode theory a 
mode will have amplified after a time t by a factor e+, i.e. 

(R- R+)iwglt/4R, (B 12) 

and this is precisely what our argument above concerning multiple over-reflexion 
predicts, bearing in mind that after n such ‘cycles’ a time 4Hn/lw,l will have 
elapsed. 

It must be borne in mind that the analysis following (B 3) is approximately 
valid only for modes whose growth rates are small, and this precludes those with 
phase speeds c near to the resonance points of either sheet [see (3.15) and (3.1 S)]. 
For modes other than these we see from (B 11) that since, roughly speaking, 
wg N w/m, the ratio of growth rate to frequency will be comparable with that of 
vertical wavelength to sheet separation distance, and the former will thus be 

30-2 
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small (as supposed) if the vortex-current sheets are separated by many vertical 
wavelengths, as is intuitively clear if the instability is viewed as being the result 
of multiple over-reflexion. 

Appendix C. Magneto-acoustic over-reflexion at a vortex sheet 
All the results needed to establish the existence of stable over-reflecting regimes 

(see figure 2) in this case can be drawn from the studies of Fejer (1963, 1964), 
McKenzie (1970) and Duhau & Gratton (1973), but we summarize the pertinent 
ones here to show what the various curves making up figure 2 mean. We confine 
attention to the case of constant density, sound speed and Alfvdn speed.t In  the 
case when U varies continuously with height we have carried out an analysis 
similar to that in $2:  it  goes through in much the same way with, in particular, 
(2.18), (2.19) and (2.26)-(2.28) retaining their validity and significance. When 
U is constant the dispersion relationship is, in the two-dimensional case, 

(w - - (a2 + V2)  (k2 + m2) (w - Uk)2 + a2V2k2(k2 +m2) = 0 (C 1) 

(see, for example, Shercliff 1965, p. 231), i.e. 

k 2 [ ( C -  U ) 2 - U 2 ]  [ (c-  up- V2] 
(a2+ V2) ( c -  U)2-a2V2 - m2 = 

When m is real the vertical group velocity is given by 

(C 3) 
m[(a2 + V 2 )  (c - U ) 2  - u2V2I2 

wg = 
k ( c -  U)3[a2{(c- U)Z- V2}f V2{(c- U)2-u2}]' 

For over-reflexion we need m real on both sides of the vortex sheet, and from 
(C 2) and (C 3) we thus obtain the following alternatives: either 

(c - U ) 2  > max (a2, V2) ,  w,mk(c - U )  > 0 (C 4) 

or min(a2, V2)  > (c- U ) 2  > a2V2/(a2+ V 2 ) ,  wgmk(c- U )  < 0. (C 5) 

In  either case we see that (C 6) wgmk(c - U )  X > 0. 

In  the reflexion problem the interface conditions are again continuity of p and 
vertical displacement, and the reflexion coefficient is 

t It must be said that this special case is of little interest, unfortunately, in connexion 
with one of the main applications of the magneto-acoustic problem, namely to the earth's 
magnetopause. McKenzie (1970), for example, uses in his stability analysis the simplifying 
approximations a V on one side of the sheet (the shocked solar wind) and a g V on the 
other (the magnetosphere) as being representative of local conditions. We not0 also here 
that there is a good case for blending the problems of hydromagnetic internal gravity 
waves and magneto-acoustic waves in connexion with the possible action of such waves 
as agents for the upward transfer of energy from the sun's convection zone to provide 
coronal heating (e.g. Lighthill 1967), although it must then be anticipated that the addi- 
tional complexities involved will render fusion of over-reflexion and stability results like 
that achieved in figures 1 and 2 extremely difficult. 
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[cf. (3.6) and (3.7)]. Provided m, and m2 are real, over-reflexion occurs if 
m, m2 S, S, < 0, and since incident and transmitted waves must have wg of the 
same sign it follows from (C 6) that we need 

(c- U,) (c -  U,) < 0. (C 8) 

After defining the parameters A and W as in (1.3) and some algebra involving 
(C 4), (C 5 )  and (C 8) it is possible to delineate three parameter regimes in which 
waves of suitable phase speed c will be over-reflected. The first, for which (C 4) is 
satisfied on both sides of the sheet, is 

W > A ,  W > 1 ,  (C 9) 

(C 10) and reduces when 7 = 0 to 

the necessary condition for over-reflexion in the absence of a magnetic field. 
The other regimes are made possible only by the presence of a magnetic field. 
The second, for which (C 5) is satisfied on both sides, is 

1%-Ull > 2% 

W < A,  w < 1, w > A/(I+A2)4, (C 11) 

while the third, for which (C4) is satisfied on one side but (C5) holds on the 

Fejer (1 964) has shown (taking three-dimensional disturbances into account) 
that the system is stable if 

and in the incompressible limit A + 00 this criterion becomes W < I, which is 
identical with (3.17). As the degree of compressibility increases, and A accordingly 
decreases, the right-hand side of (C 13) systematically decreases and compres- 
sibility exerts a destabilizing influence, with the criterion being W < fr in the 
limit of high compressibility ( A  + 0). Equation (C 13) gives the lower stability 
boundary in figure 2. According to Duhau & Gratton (1973), however, once A 
drops below unity violation of (C 13) no longer automatically implies instability. 
Indeed, they find a second stable region when A < 1: 

W < +[I +A/ ( I  +A2)4], (C 13) 

The fusion of criteria (C 9)-(C 14) leads to figure 2, in which two distinct stable 
over-reflecting regimes are evident. 
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